這部片前陣子就看了,現在終於有點時間來寫點東西
應該還有些人記得2016年初那場人機大戰,最後的結果是alphaGO以4:1橫掃人類棋王李世石,人工智慧也再度被炒熱了,一瞬間最難的圍棋也被人工智慧攻克
先來說說圍棋,對弈雙方在棋盤網格的交叉點上交替放置黑色和白色的棋子。落子完畢後,棋子不能移動。對弈過程中圍地吃子,以所圍「地」的大小決定勝負,圍棋被認為是目前世界上最複雜的棋盤遊戲之一。下法千變萬化,因為每顆棋子能選擇的路徑很多,每個下一步有將近兩百種的選擇,即使運用全世界的電腦,運行一百萬年,也難以窮盡它所有的變化方式,所以最簡單的窮舉法(暴力演算法),並無用武之地。
接下來為什麼人工智慧要進場了呢?因為過去算完所有步法後找最佳路徑的窮舉法沒辦法在圍棋上使用,於是Deepmind針對這部份,設計了三個區塊的網路,第一個區塊是使用走棋網路Policy Network,用數以萬計的棋譜去訓練他,讓他習得棋手的招式,第二部分是估值網路Value Network,用來衡量棋局情勢,來判斷棋局目前的獲勝機率,第三個部分是Tree Search,用來分析棋局的各種變化情形,在此是使用蒙地卡羅樹搜尋Monte Carlo tree search。alphaGO的原則是把勝率提升到最大,只要贏就好,不在乎贏多少,搜尋樹概念如下圖。
影片的故事從人工智慧打磚塊遊戲開始,說明機器學習如何進步,與進步是多麼神速,接下來是歐洲圍棋冠軍樊麾與alphaGO對弈,一開始樊麾認為自己可以輕鬆取勝,畢竟在過去還沒有圍棋程式能夠戰勝職業棋手,因為圍棋真的是太複雜了,誰知道卻被5:0橫掃,而在此時此刻,AI的發展正式突破了一個臨界點,在跟alphaGO對弈的過程中,人工智慧就像一面鏡子,透過那面鏡子,棋手看到一個不認識的自己,還有深不可測的實力與棋局,進而開始懷疑自己,在影片後段,李世石在面對alphaGO的第37手時,同樣陷入了困境,各地的評論家也完全看不懂,而事後卻證明,alphaGO看到的遠超乎我們想像。
第二場37move |
除了風光比賽的背後,AlphaGO的團隊也令人印象深刻,在世紀大賽的前三天,大家發現了一個重大的缺陷,卻找不到解決的方法,共同傷腦筋的畫面,以及比賽開始時,李世石下了第一步之後,AlphaGO思考了幾分鐘,那一瞬間,竟是那麼的漫長,可想見當時的團隊開發人員,壓力有多大,如果這時候跳出個系統錯誤之類的,或是畫面藍了,那會有多尷尬!人工智慧可能就瞬間變成笑柄了,所幸,AlphaGO下了第一步,棋局正式展開!
最後想說,一群絕頂聰明又具有共同熱情的人,聚在一起,無比專注、無比努力,只想著要攻克一個問題,問題看似很簡單,但是解決的路途卻又遙遠的看似看不到終點,這個過程,非常令人感動。同時我也非常羨慕,羨慕他們能夠聚在一起,長時間熱情的、專注同一件事,共同努力攻克目標。
看完這部片的時候,想到自己手上的專案,也是在用類似的方式,在朝預測自殺的問題邁進,自殺這件事情存在已久,累計的文獻以及資料堆積如山,但至今卻沒有一個非常有效的方式能夠預測,這就是我想要攻克的目標,雖說目前感覺仍似看不到彼岸,但隨著程式碼持續的改進,與訓練模型,也許終點將不再遙遠。
沒有留言:
張貼留言